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1. INTRODUCTION

The ordinary Riemann integral can be regarded as an extension of the
integral of a polynomial to a larger space in the following way. Let fJIJ denote
the vector space of all bounded real-valued functions on [0, 1] and f!IJ the
subspace consisting of the polynomials. For x in f!IJ define

1

Pox = f x(t) dt.
o

Then Po is a linear functional defined on f!IJ. Moreover Po is positive, Le.,
PoX ?: 0 for all x E f!IJ, x ?: O.

The usual definition of the Riemann integral in terms of upper and lower
sums yields the following.

THEOREM 1.1. An element x of fJIJ is Riemann integrable if and only if
for each n = 1,2'00" there exist Xn , xn E f!IJ such that

(i) xit) ~ x(t) ~ xn(t), 0 ~ t ~ 1,

(ii) Po(xn - x n) ---+ 0 as n ---+ 00.

If (i) and (ii) are satisfied, then the sequences {PoXn}, {PoXn} both converge to

rx(t) dt.
o

Ifwe set

Px = lim Poxn = lim Poxn
II-tOO n~CO

then Theorem 1.1 yields a vector space 9£ (the Riemann integrable functions)
such that f!IJ C 9£ C fJIJ, and P is an extension of Po to 9£.
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Apparently Theorem 1.1 was first established by H. Weyl [13]. There are
some advantages in this approach to the Riemann integral. Many of the
properties of polynomials or continuous functions are inherited by the
Riemann integrable functions through Theorem 1.1. Numerical quadrature
is a specific example of this. For each x in !?i let

n

Pnx = L WnkX(tnk),
k~l

Wnk ;?: 0, n = 1,2,....

If Pnx - Px for each x in &', then Pnx - Px for each x in!?i [12].
This order-approximation approach to the Riemann integral has been

used by others [2, 5, 7, 8] in more recent years. In [I], Anselone replaced the
Riemann integral by a positive linear functional defined on an arbitrary
ordered vector space. We shall consider the more general case of a positive
operator mapping an ordered vector space into an ordered topological vector
space. In Section 2 we shall establish a result corresponding to Theorem 1.1
in this more general situation. This result is applied, in Section 3, to the
Bochner integral of functions mapping a locally compact Hausdorff space
into a Banach lattice.

In Sections 4 and 5 we consider the pointwise convergence of a sequence
(or net) of positive operators to a positive operator P. We establish some
results similar to those mentioned above concerning the convergence of
numerical quadrature to the Riemann integral. More precisely, we prove that
convergence on a suitable subspace will imply convergence on the whole
space. In Section 4 a generalization of Korovkin's monotone operator
theorem on qo, I] is given and Korovkin's theorem on Rm is given. Weak
convergence is considered in Section 5 and in addition a Korovkin type result
is given for Lo[O, 1], 1 ~ p < 00.

In this paper, all spaces will be real. By an ordered topological vector
space (TVS) we mean a TVS which has an order structure. If we want the
positive cone to be normal or closed we shall specifically say so. For the
definition of a normal cone and related material we shall follow [9].

2. EXTENSIONS OF POSITIVE OPERATORS

We first give a procedure that extends a positive operator defined on an
ordered vector space.

Let Y be a sequentially complete, Hausdorff TVS ordered by a normal,
closed positive cone.

THEOREM 2.1. Let Xl be an ordered vector space, Xo a subset, and Po a
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positive operator mapping Xo into Y. We define a set X as follows. Given x
in Xl' x is in X ifand only if, for n = 1,2,... , there exist Xn , x n in Xo with

(i) X n ~ x ~ xn ,

(ii) Poxn - Poxn ---* 0 as n ---* 00.

Then XoC X C Xl' The sequences {Poxn }, {POXn} converge to the same limit.
For x in X define

(iii) Px = limn~<Xl PoXn = Iimn~oo Poxn •

Then Px is independent ofthe choices of{xn} and {xn} and P is a positive operator
mapping X into Y. Moreover ifPo is a linear operator and Xo a subspace, then
X is a subspace and P a linear operator.

Proof Let {xn}, {xn} be sequences in Xo such that (i) and (ii) hold. Then
for any integers nand p

so {PoXn } is a Cauchy sequence in Yand therefore converges. By (ii), {POxn}

converges to the same limit. If {yn}, {Yn} are two other sequences satisfying
(i) and (ii), then

and by symmetry we have equality. The remainder of the proof is routine.
If Xl is a TVS and Xo is closed, then X may not be closed. To see this

let Xl = Ll[O, 1], Xo the subspace consisting of the continuous functions
and Po the Riemann integral.

PROPOSITION 2.1. Assume that the hypotheses of Theorem 2.1 hold and
that Xo , Xl are vector lattices. Then X is a vector lattice.

Proof This follows from the inequality

I(x v z) - (y v z)1 ~ 1 x - yl.

In the next section we use Theorem 2.1 to define the Riemann-Bochner
integral.

3. THE RIEMANN-BoCHNER INTEGRAL

Let (X, 01,,.,,) be a measure space and E a Banach lattice. E' will denote the
normed dual of E. A function x mapping X into E is said to be weakly
measurable if for eachf in E', f(x(t)) is a measurable function; x is said to
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be strongly measurable if there is a sequence of finitely valued functions con
verging strongly to x a.e.

We will need the following two results, the first of which is due to Pettis [10]
and the second to Bochner [3].

PROPOSITION 3.1. A function x mapping X into E is strongly measurable
if and only if

(i) x is weakly measurable and

(ii) there exists a set Bo of measure zero such that {x(t) : t E X - Bo}
is separable.

PROPOSITION 3.2. A strongly measurable function x is Bochner integrable
if and only ifll x(t)ll is integrable.

We define a linear map P from the vector space V of strongly measurable
and (Bochner) integrable functions into E by

Px = Ix xdiJ-.

For x in V, we write x ~ 0 if x(t) ~ 0 a.e. Suppose x E V, X ~ O. For any
positive functional f in E' we have

f(Px) ~ 0

whence P is a positive map V into E.

LEMMA 3.1. If x E V, X ~ 0 and Px = 0, then x(t) = 0 a.e.

Proof By Proposition 3.1 we may assume without loss of generality that
E is separable. Then there is a sequence {In} C E', Ilfn II ~ 1, n = 1,2,... ,
such that for any fo in E', lifo II ~ 1, there is a subsequence {In'} of {In} such
that fn'(x) -+ fo(x) for all x in E [15]. Let E > 0 be fixed and define
A. = {t EX: II x(t)11 > E}, At = {t EX: f(x(t)) > E}, fE E'. We now show
A. = U:=l At . It is clear that A. "J U:=l At . If tEA. then by the Hahn
Banach theor~m there exists fo E E', lifo II = nl , fo(x(t)) = II x(t)11 > E. There
exists a subsequence {In'} such that fn,(x(t)) -+ fo(x(t)), whence tEAt for
some n, i.e., A. C U:=l At . For any positive functional f in E', f(P;;) =
P(f(x)) = 0 so that At hasnmeasure zero for any fin E'. Therefore iJ-(A.) = 0
for any positive E, which implies x(t) = 0 a.e.

At this point we take X to be a locally compact topological space and iJ
a regular Borel measure on X. We will require E to have the property that
every positive decreasing sequence is strongly convergent.
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Let Cc(X: E) denote the continuous functions mapping X into E with
compact support, and B(X: E) the bounded functions mapping X into E.
For x in B(X : E), define

II x II = sup II x(t)11 .
lEX

With this norm B(X : E) is a Banach space and Cc(X : E) is a closed subspace.
Each x in Cc(X: E) has separable range in E; hence x is strongly measurable

and integrable. For x in CC<X: E), define

Pox = Ix xdfJ-.

Clearly Po is a positive, continuous map from CC<X: E) into E. By Theorem
2.1 we extend Po to a positive operator P defined on the subspace R(X: E)
and Cc(X: E) C R(X : E) C B(X : E). From Proposition 2.1 we conclude
that R(X : E) is a vector lattice.

THEOREM 3.1. If x E R(X : E) then x is continuous a.e. fp.].

Proof For each integer m ~ 1, there exist x m, Xm in Cc(X: E) such that
xm(t) ::;; x(t) ::;; xm(t), xm(t) i, xm(t) ! and Po(xm - xm) -+ 0 as m -+ 00. Hence
there exist functions sup x, inf x : X -+ E such that sup x(t) = liIDm~oo xm(t),
inf x(t) = limm~oo xm(t), t E X. Since x m, x m , m ~ 1, have separable ranges,
sup x, inf x also have separable ranges and thus sup x, inf x are Bochner
integrable. Note that

+ I (Xm - inf x) dfJ- -+ 0 as m -+ 00.

By Lemma 3.1, sup x(t) = inf x(t) a.e. From the inequality

we see that x is continuous wherever sup x(to) = inf x(to)' Thus x is con
tinuous almost everywhere.

It is known [2] that the converse of Theorem 3.1 is true when E is the real
line (and thus for E = Rm) but we don't know whether it is true in general.

PROPOSITION 3.1. If x is continuous a.e. and has compact support, then x
is strongly measurable.
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Proof Let B be the set of points at which x is not continuous. There
exist open sets Gm , m = 1,2,... , such that I-'(Gm) < 11m, G1:J G2 :J ... :J B.
Let Fbe the support of x. Each of the sets {x(t) : t E F - Gm } is compact and
hence separable, whence {x(t) : t EF - n:~l Gm } is separable. Since n:~l Gm

has measure zero, x is strongly measurable.
Since each x in R(X : E) has compact support, x is strongly measurable

and integrable.
If X = [0, 1] and E is the real line, then R(X: E) is the set of Riemann

integrable functions on [0, 1]. In view of this it seems reasonable to call
R(X : E) the set of Riemann-Bochner integrable functions and P the
Riemann-Bochner integral.

4. POINTWISE CONVERGENCE OF POSITIVE OPERATORS

Let Xo , X, and Y satisfy the hypotheses of Theorem 2.1. We wish to
investigate the pointwise convergence of positive operators defined on X.

THEOREM 4.1. Let {Pi: i E I} be a net of positive operators mapping X
into Y such that PiX converges to Px for each x in Xo . Then PiX converges to
Px for each x in X.

Proof From the inequality Xn ~ x ~ x n we obtain

PiX - Px ~ (Pixn - Pxn) + (Pxn - PXn), and

PiX - Px ~ (Pixn - Pxn) + (Pxn - Pxn).

Since Y has a normal cone, the theorem follows.
As an application of this theorem let Xo denote the space of all real-valued

continuous functions defined on [0, I], X the space of all real-valued Riemann
integrable functions defined on [0, I] and P the Riemann integral. Define

n

Pnx = L: WnkX(tnk),
k~l

Wnk ~ 0, n = 1,2,....

If PnX - Px for all x in Xo , then PnX - Px for all x in X. Most of the usual
quadrature formulas, Newton-Cotes excepted, have the above properties.

DEFINITION 4.1. Let X be a normed linear space and X' its normed
dual. We say that a subset Q of X' is norm-determining if Ilfll ~ 1 for allf
in Q, and for each x in X

II x II = sup [I f(x)1 : f E Q}.
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For example the unit ball in X' is a norm-determining subset of X'. If S
is a compact metric space, then the point evaluation functionals comprise
a norm-determining subset of C(S)'. If X is a normed linear space ordered by
a normal cone then each continuous linear functional can be written as the
difference of two positive linear functionals [9, p. 72], so there exists at least
one subset Q of X' consisting of positive functionals such that Q - Q is a
norm-determining set.

We now prove a result which generalizes Korovkin's theorem [6, p. 14].
For other generalizations see [11, 14].

THEOREM 4.2. Let X be an ordered Banach space, Y an ordered normed
linear space, Xo a subspace of X and Q a set of positive continuous linear
functionals such that Q - Q is a norm-determining subset of Y'. Let P be a
positive linear operator from X into Y. For each x in X, n = 1,2,... , and tin Q
assume there exist Xnt and x nt in Xo such that

(i) Xnt ~ x ~ x nt,

(ii) t(Pxnt - Pxnt) --- 0 as n --- 00, uniformly for t E Q,

and for each x in X and n

(iii) {xnt : t E Q}, {xnt : t E Q} are totally bounded.

Let {Pk} be a sequence of positive linear operators on X into Y such that

(iv) II Pkx - Px [I --- 0 as k --- 00, for each x in Xo '

Then II Pkx - Px II --- 0 as k --- 00, for each x in X.

Proof By the uniform boundedness principle

II PkXnt - PXnt II --- 0

II Pkxnt - pxnt II --- 0

Then (i), (ii), and (iv) yield

as k --- 00,

as k --- 00,

as k --- 00,

uniformly in t,

uniformly in t.

uniformly for t E Q.

Since Q - Q is norm-determining we have II Pkx - Px II --- o.
A special case of Theorem 4.2 was obtained by Anselone in [1].
Let Rm denote m-dimensional Euclidean space and t = (t1 ,... , tm) points

of Rm. Let F be a compact subset of Rm and C(F) the Banach space of con
tinuous, real-valued functions defined on F with the sup norm.

THEOREM 4.3 (Korovkin). Let {Pk} be a sequence of positive linear
operators mapping C(P) into itself Assume Pkx --- xfor thefunctions x(t) = 1,
x(t) = ti , i = ],2,... , m, x(t) = t1

2 + .0. + tm
2• Then Pkx --- x for each

x in C(F).
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Proof For each x in C(F), n = 1,2,... , t in F, there exist x nt, Xnt of the
form

xnt(s) = x(t) - (lIn) - an[(sl - t1)2 + + (sm - tm)2] (4.1)

xnt(s) = x(t) + (lin) + an[(sl - t1)2 + + (sm - tm)2] (4.2)

such that

(4.3)

This follows from the uniform continuity of x. Note that

xnt(t) - Xnt(t) = 21n

and that the sets

{x,.t: tEO F}, {xnt : tEO F}

are bounded and equicontinuous. Therefore the result follows from
Theorem 4.2 with 51 = F and P = I.

5 WEAK CONVERGENCE AND CONVERGENCE ON Lp[O, I]

We now give some results concerning weak convergence of positive
operators. If E is a TVS and X n , X EO E, n = I, 2, ... , we shall denote the weak
convergence of the sequence {xn} to x by x,. -- x (w).

Let Y be an ordered TVS such that every continuous linear functional on Y
can be written as the difference of two positive continuous functionals. The
proof of the first result is similar to that of Theorem 4.1.

PROPOSITION 5.1. Let X be an ordered vector space and Xo C X. Let P
be a positive operator mapping X into Y such that for n = I, 2, ... , there exist
x", Xn in Xo with

(i) Xn:S;; x :s;; x n,

(ii) P(xn - x n) -- 0 (w).

Let {Pi: i E I} be a net of positive operators mapping X into Y such that
PiX -- Px (w)for each x in Xo ' Then PiX -- Px (w)for each x in X.

THEOREM 5.1. Let 51 be a set of positive continuous linear functionals on
Y such that for each x in X, n = 1,2,.. " tin 51, there exist Xnt, x nt in Xo with

(i) Xnt:S;; x :s;; x nt,

(ii) t[Pxnt - PXnt] -- 0 as n -- 00.
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Let {Pi: i E I} be a net ofpositive operators from X into Y such that

(iii) t[Pix - Px] -- 0 for each x in Xo , tin Q.
Then t[Pix - Px] -- 0 for each x in X, t in Q.

Proof This follows from the inequalities

t[Pix - Px] ~ t[Pixnt - Pxnt] + t[Pxnt - PXnt ],

t[Pix - Px] ~ t[PiXnt - Pxnt] + t[PXnt - Pxnt ],

t E Q, n = 1,2,....

SupposeFis a compact subset of Rm and {Pk } is a sequence of positive linear
operators mapping C(F) into itself.

COROLLARY 5.1. If the norms II Pk 1[, k = 1,2,... , are uniformly bounded and
(Pkx)(t) -- x(t), t EF,for thefunctions x(t) = 1, t1 , t2 , ... , tm , t1

2 + ... + tm2,

then (Pkx)(t) -- x(t), t E F, for all x in C(F).

Proof This follows from Eqs. (4.1), (4.2), Theorem 5.1 and the fact
that for bounded sequences in C(F), weak convergence is equivalent to
pointwise convergence.

COROLLARY 5.2. Let C(Rm) denote the vector space of all real-valued
continuous functions defined on Rm and {Pk} a sequence of positive linear
operators mapping C(Rm) into itself. Suppose for each compact subset F of Rm,
there exists a constant M(F) such that I Pk(1)(t)1 ~ M(F), for t in F,
k = 1,2,.... If (Pkx)(t) -- x(t), t E Rm,Jor the functions x(t) = 1, t1 , ... , tm ,
t1

2 + ... + tm2, then (Pkx)(t) -- x(t)for each x in C(~).

Now we shall consider the convergence of positive operators on L~[O, 1],
1 ~p < 00.

THEOREM 5.2. Let {Pk} be a sequence ofpositive linear operators mapping
L~[O, 1] into itself. Suppose Pkx -- x (w)for the functions x(t) = 1, t, (2. Then
Pkx -- x (w)for every x in L~[O, 1] if and only if the norms II Pk II, k = 1,2,... ,
are uniformly bounded.

Proof If Pkx -- X (w) for each x in L~[O, 1], then the norms would be
uniformly bounded by the uniform boundedness principle. Conversely
suppose there is a constant M such that II Pk II ~ M, k = 1,2,.... It suffices
to prove the theorem for continuous functions so let x E L~[O, 1], x continuous
and define 'Pt(s) = (t - S)2, 0 ~ s, t ~ 1. For each n = 1,2,... , and each t
in [0,1] we have xnt, Xnt as defined in Eqs. (4.1), (4.2) (with m = 1) and satis-
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fying (4.3). Let fE LjJ[O, 1]' = Lq[O, 1], (lIp) + (llq) = 1 and we may
assumef(t) ?': °a.e. For each integer k and n we have

I
1 1

f(t)[(Pkx)(t) - x(t)] dt ~ I x(t)f(t)[(Pkl)(t) - 1] dt
o 0

I I1+ - f(t)[(Pkl)(t)] dt
n 0

+ an rf(t)[(Pklpt)(t)] dt,
o

I: f(t)[(Pkx)(t) - x(t)] dt ?': I: x(t)f(t)[(Pkl)(t) - 1] dt

1 I1
- - f(t)[(Pkl)(t)] dt

n 0

- an rf(t)[(Pklpt)(t)] dt,
orf(t)[(Pklpt)(t)] dt - 0.

o

Hence f(Pkx) - f(x) and the proof is complete.
Now we are in a position to give a Korovkin-type theorem for LjJ[O, 1].

THEOREM 5.3. Let {Pk} be a sequence ofpositive linear operators mapping
Lp[O, I] into itself. If

(i) the norms II Pk II, k = 1,2,..., are uniformly bounded,

(ii) Pk l - 1,

(iii) Pkx - x (w) for the functions x(t) = t, t 2
, then Pkx - x for all x

in Lp[O, 1].

Proof. Let G be the set of all g in L1>[O, 1] such that g is the characteristic
function of a subinterval of [0, 1] or the characteristic function of the com
plement of such a subinterval. It suffices to show Pkg - g for each g in G.
For g in G, let Zg = {t : get) = O}. By Theorem 5.3 we have Pkg -- g (w)
which implies

as k -- 00, gEG. (5.1)

Let gin G be fixed andf = 1 - g. ThenfE G and

I (Pd)(t) dt = f [(Pkl)(t) - 1] dt + I [1 - (Pkg)(t)] dt.
~ ~ ~
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Then (5.1) yields
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as k -+ 00.

Another application of(5.1) gives

rI(Pkg)(t) - g(t)1 dt -+ 0
o

as k -+ 00.

Let {Pk,g} be an arbitrary subsequence of {Pkg}. Then there is a further
subsequence {Pk" g} such that (Pk" g)(t) -+ g(t) a.e., as k" -+ 00. Let
E > 0 be given. Then by Egoroff's theorem there exists a set A with
m(A) < tE[2P + 22P ]-1 and on [0, I] - A, (Pk" g)(t) -+ g(t) uniformly. The
inequality

yields II Pk" g - gil < € for k" sufficiently large. Therefore Pkg -+ g and
the proof is finished.

A similar result was established in [4] using the three functions x(t) = I,
sin t, cos t, except it was assumed that Pkx converges strongly to x for all
three functions.
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